SUPEROXIDE GENERATION IN SPERMATOZOA OF INFERTILE PATIENTS: RELATIONSHIPS WITH SEMEN QUALITY
A. Gupta, N. Kattal, R. Sharma, S. Sikka, E. Mascha, A. Thomas Jr., A. Agarwal, Cleveland Clinic Foundation and Tulane University

Reactive oxygen species (ROS) generation by abnormal spermatozoa is considered to be mediated by the excess generation of NADPH leading to production of the superoxide (O$_2^-$) radical. However, in most studies, luminol, a probe specific for hydrogen peroxide (H$_2$O$_2$), has been used. Our objective was to examine the levels of O$_2$ and H$_2$O$_2$ generation in a group of infertile men and estimate the correlation between semen quality and the levels of ROS generation triggered by exogenous NADPH. Semen samples were obtained from 11 infertile men and 6 healthy donors. The basal levels of H$_2$O$_2$ and O$_2$ generation were estimated in washed spermatozoa by chemiluminescence assay using luminol and lucigenin as probes, respectively. We further evaluated their generation after incubation with 2 concentrations of NADPH (5mM and 10mM). Results are expressed in X 106 counted photons/20 X 106 sperm. A significantly higher level of O$_2^-$ generation was observed in spermatozoa of infertile patients (.73 (.5, 5.5)) as compared with healthy donors (.20 (0.0, 0.5) p <0.02). H$_2$O$_2$ followed the same trend but was not significant. NADPH at both concentrations triggered high levels of O$_2$ generation (p< .001 for each). O$_2^-$ generation triggered by NADPH was negatively correlated with sperm concentration (r = -0.75; p <0.001), motility (r = -0.69; p <0.01), and % normal morphology (r = -0.78; p <0.01) based on WHO criteria. We conclude that spermatozoa from infertile men produce significantly high levels of O$_2$ compared with normal donors. The ability of spermatozoa to generate O$_2$ increase as the semen quality declines. We speculate that the superoxide radical plays an important, independent role in the pathogenesis of male infertility. It is, therefore, prudent to measure both O$_2$ and H$_2$O$_2$ radicals while reporting the levels of oxidative stress in a semen sample.